Can the second law of thermodynamics hold in cell cultures?
نویسنده
چکیده
Citation: Selvarajoo K (2015) Can the second law of thermodynamics hold in cell cultures? Front. Genet. 6:262. Living systems have the ability to adapt and self-organize when challenged with drastic environmental changes. The remarkable characteristic of plasticity and collectivity allow them to evolve and survive over billions of years in a rather unpredictable manner. Observing and studying the dynamic complexity have influenced many scientists across diverse disciplines to believe that living systems operate far from equilibrium and, hence, the second law of thermodynamics and ergodicity breaks down (Stuart, 1995; Prigogine, 1997). Therefore, it may not be feasible to develop simple deterministic models to interpret complex living systems' behavior. Briefly, the second law of thermodynamics states that entropy in systems that are in equilibrium will increase over time or space. In other words, order will decrease in a thermodynamically equilibrium system where there is no exchange of matter or energy. Living systems, which constantly exchange matter and energy to the surroundings, can be considered to exist far from equilibrium to achieve biological order (Stuart, 1995). One appropriate example is the ability of bacteria to exchange pheromone during environmental threats, such as during antibiotic treatment, to form biofilms which are highly organized structures resistant to the therapeutic intervention (Chatterjee et al., 2013). The biofilm example demonstrates that the cooperative behavior of organisms can be very different to the individual response. Thus, using ergodic principle or predictive deterministic approaches to understand cellular behaviors can be questionable, and this issue has been debated from time to time. Most biological experimentations of mammalian cells are performed in vitro, where cells from living tissues are removed from their physiological neighbors and regrown in minimum media that will support the morphology, survival, and growth of the cells. The number of cells used in different experiments, although variable, are usually several order of magnitudes lower than that in actual tissues or organs. Under such far from realistic laboratory conditions, are in vitro cells able to display emergent behaviors? Remarkably, genome-wide oscillatory behaviors have been observed in continuously cultured laboratory yeast, and the mammalian circadian clocks have been reproduced in a plate (Klevecz et al., 2004; Sato et al., 2006). Although fascinating, the collective behaviors were achieved for limited periods under carefully controlled experimental conditions, such as the rate of aeration and agitation of fermenters, etc. Outside the specified range, the synchronization of cells fade. In a more recent …
منابع مشابه
Structure formation and generalized second law of thermodynamics in some viable f(R)-gravity models
We investigate the growth of matter density perturbations as well as the generalized second law (GSL) of thermodynamics in the framework of f(R)-gravity. We consider a spatially flat FRW universe filled with the pressureless matter and radiation which is enclosed by the dynamical apparent horizon with the Hawking temperature. For some viable f(R) models containing the Starobinsky, Hu-Sawicki, Exp...
متن کاملبررسی شکافتگی کوچک و دیگر تکینگیهای آینده عالم و برقراری قانون دوم ترمودینامیک در نظریه
The future singularities are possible in a universe that is described by F(R) theory. In previous studies the occurrence of the singularities in F(R) theory have been considered by using a special function for the Hubble parameter and calculating the F(R) function for each of the singularities. Using the specified Hubble parameter causes some difficulties in the study of the second law of therm...
متن کاملEnergy and Second Law of Thermodynamics Analysis of Shower Cooling Tower with Variation in Inlet Air Temperature
A shower cooling tower (SCT) operates without fill because of salt decomposition on the fill that leads to deterioration of conventional cooling tower performance. This study presents a two-dimensional mathematical model for energy and exergy analysis of multi-diameter droplets and air interaction along with the height of the forced draft SCT, to predict the exit condition of water droplet for ...
متن کاملValidity of the second law in nonextensive quantum thermodynamics.
The second law of thermodynamics in nonextensive statistical mechanics is discussed in the quantum regime. Making use of the convexity property of the generalized relative entropy associated with the Tsallis entropy indexed by q, Clausius' inequality is shown to hold in the range q in (0, 2]. This restriction on the range of the entropic index, q, is purely quantum mechanical and there exists n...
متن کاملThe Holographic Model of Dark Energy and Thermodynamics of Non-Flat Accelerated Expanding Universe
Motivated by recent results on non-vanishing spatial curvature [1] we employ the holographic model of dark energy to investigate the validity of first and second laws of thermodynamics in non-flat (closed) universe enclosed by apparent horizon RA and the event horizon measured from the sphere of horizon named L. We show that for the apparent horizon the first law is roughly respected for differ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015